Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
  • eBook:
    Foundations of Machine Learning, second edition
  • Author:
    Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar
  • Edition:
    2 edition
  • Categories:
  • Data:
    December 25, 2018
  • ISBN:
  • ISBN-13:
  • Language:
  • Pages:
    504 pages
  • Format:
    PDF, ePUB

Book Description
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.
Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.
This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.


1. Introduction
2. The PAC Learning Framework
3. Rademacher Complexity and VCDimension
4. Model Selection
5. Support Vector Machines
6. Kernel Methods
7. Boosting
8. OnLine Learning
9. MultiClass Classification
10. Ranking
11. Regression
12. Maximum Entropy Models
13. Conditional Maximum Entropy Models
14. Algorithmic Stability
15. Dimensionality Reduction
16. Learning Automata and Languages
17. Reinforcement Learning

Download Foundations of Machine Learning, second edition PDF or ePUB format free

Free sample

Download in .PDF format

Download in .ePUB format

Add comments
Введите код с картинки:*
Кликните на изображение чтобы обновить код, если он неразборчив
Copyright © 2019