Applied Deep Learning
09.09.2018 176 0 Free ebook

Applied Deep Learning

Computers & Technology
ISBN: 1484237897 Format: PDF Edition: 1st ed. edition Date: October 21, 2018 Pages: 410 pages Language: English

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. 
The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. 
Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). 

What You Will Learn

  • Implement advanced techniques in the right way in Python and TensorFlow
  • Debug and optimize advanced methods (such as dropout and regularization)
  • Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on)
  • Set up a machine learning project focused on deep learning on a complex dataset
Who This Book Is For
Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.
В закладки

Dear users and students. The Book Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks on our website it is presented for demonstration only. We do not store the files, If you like the book, please remove it and to buy a printed version of the book.

If You feel that this book is belong to you and you want to unpublish it, Please Contact us.

This site comply with DMCA digital copyright. We do not store files not owned by us, or without the permission of the owner. We also do not have links that lead to sites DMCA copyright infringement.



Comments (0)
ADD COMMENTS
Прокомментировать
reload, if the code cannot be seen
Building Probabilistic Graphical Models with Python
Building Machine Learning Systems with Python - Second Edition
Bioinformatics with Python Cookbook
Beginning R
Apache Solr Search Patterns
Apache Mahout Essentials
Advanced Windows Debugging
Lifelong Machine Learning